DIFFERENTIAL CRYPTANALYSIS IN BLOCK CIPHERS

SEMINAR OF DEPARTEMENT 1

RODRÍGUEZ CORDERO Ana Margarita 11 July 2022

Université de Lorraine LORIA

SYMMETRIC CRYPTOGRAPHY

SYMMETRIC CRYPTOGRAPHY

- · Stream ciphers
- · Block ciphers

SYMMETRIC CRYPTOGRAPHY

• Block ciphers

BLOCK CIPHERS

Definition

Given a key $K \in \mathbb{F}_2^m$, a message $M \in \mathbb{F}_2^N$, a block cipher of block size n is an invertible function E_K that encrypts the message M in blocks of size n.

2

Linear layer

Linear layer

Matrix multiplication

Linear layer

- · Matrix multiplication
- \cdot Bit, byte, nibble permutations

Linear layer

- · Matrix multiplication
- · Bit, byte, nibble permutations
- · Constant additions

Linear layer

- · Matrix multiplication
- Bit, byte, nibble permutations
- · Constant additions

Non-linear layer

Linear layer

- · Matrix multiplication
- Bit, byte, nibble permutations
- · Constant additions

Non-linear layer

Substitution boxes (S-boxes)

Linear layer

- · Matrix multiplication
- Bit, byte, nibble permutations
- · Constant additions

Non-linear layer

· Substitution boxes (S-boxes)

	0x0							
S(x)	0x5	0x3	0x4	0x6	0x2	0x7	0x0	0x1

SPN AND FEISTEL CIPHER

 $\boldsymbol{\cdot}$ Can we distinguish the cipher from a random permutation?

- · Can we distinguish the cipher from a random permutation?
- $\boldsymbol{\cdot}$ Is the ciphertext giving us any information?

- · Can we distinguish the cipher from a random permutation?
- Is the ciphertext giving us any information?
- · Is there any weakness in the design?

- · Can we distinguish the cipher from a random permutation?
- · Is the ciphertext giving us any information?
- Is there any weakness in the design?

Provable security

Establish and meet security parameters

Given a block cipher *E*, a plaintext *P* and an unknown key *K*, differential attacks study the propagation of input differences throughout the cipher:

$$\nabla = E_K(P) \oplus E_K(P \oplus \Delta).$$

- $\cdot \Delta$ input difference
- + ∇ output difference
- $\nabla = E_K(X) \oplus E_K(\Delta \oplus X)$, for $X \in \mathbb{F}_2^n$
- · Is $P(\Delta \to \nabla)$ high?

DIFFERENTIAL PROPERTY

DIFFERENTIAL PROPERTY

Difference propagates with probability 1 in the linear layer

DIFFERENTIAL PROPERTY

Difference propagates with probability 1 in the linear layer

Difference Distribution Table:

$$\textit{DDT}(\Delta_i, \nabla_o) = \# \left\{ x \in \mathbb{F}_2^n : \textit{S}(x) \oplus \textit{S}(x \oplus \Delta_i) = \nabla_o \right\}$$

Δ: Input		abla: output difference										
difference	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7				
0x0	8	0	0	0	0	0	0	0				
0x1	0	2	2	0	0	2	2	0				
0x2	0	2	2	0	0	2	2	0				
0x3	0	0	0	4	0	0	0	4				
0x4	0	0	0	0	4	0	0	4				
0x5	0	2	2	0	0	2	2	0				
0x6	0	2	2	0	0	2	2	0				
0x7	0	0	0	4	4	0	0	0				

- · Step 1: Abstraction:
 - · Truncated differential patterns.
 - · Number of S-boxes minimized.

- · Step 1: Abstraction:
 - · Truncated differential patterns.
 - · Number of S-boxes minimized.
- Step 2: Enumeration:
 - Find non-abstracted differential characteristics: Distinguishers.

- · Step 1: Abstraction:
 - · Truncated differential patterns.
 - · Number of S-boxes minimized.
- Step 2: Enumeration:
 - Find non-abstracted differential characteristics: Distinguishers.
- ightarrow Modelling with MILP

- · Find minimum number of active S-boxes
- Find all difference patterns minimizing the active number of S-boxes

11

STEP 2

- Find a differential characteristic that fits the truncated pattern.
- Modelling the S-box Difference Distribution Table

LINEAR S-BOX MODELLING

S-BOX MODELLING

· Conditional modelling technique

$$(x_0,...,x_{m-1}) = (\delta_0,...,\delta_{m-1}) \in \{0,1\}^m \text{ implies } x_m = \delta_m \in \{0,1\}$$

$$\sum_{i=0}^{m-1} (-1)^{\delta_i} x_i + (-1)^{\delta_m + 1} x_m - \delta_m + \sum_{i=0}^{m-1} \delta_i \ge 0$$

- · H representation of the convex hull
 - · Greedy algorithm
 - · Minimizing the set of inequalities as a MILP problem

S-BOX MODELLING

- Product-of-Sum Representation of Boolean Functions
 - · Representation of the DDT as a boolean function
 - · Minimization with Quine-McCluskey (QM) algorithm

Definition

A cluster is a set of differentials with the same input-output differences

Definition

A cluster is a set of differentials with the same input-output differences

 \cdot Hard to know the exact probability of a difference o Clusters

DIFFERENTIAL CRYPTANALYSIS IN BLOCK CIPHERS

SEMINAR OF DEPARTEMENT 1

RODRÍGUEZ CORDERO Ana Margarita 11 July 2022

Université de Lorraine LORIA